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Abstract

A sawmill cuts logs into lumber and sells this lumber to
secondary remanufactures. The price a sawmiller can charge
for a volume of lumber depends on its grade, For a number
of species the price of a given volume of material can double
in going from one grade to the next higher grade. Thus,
accurately establishing the grade of a volume of hardwood
lumber is very important to both seller and purchaser of this
material. Currently, the grading of hardwood lumber is done
by human inspectors. Unfortunately, they often lack consistency
in their grading of lumber. Hence, there is a strong motivation
for wanting to develop an automatic lumber grading system.
The research reported in this paper is aimed at developing a
computer vision system that will be used to automatically grade
rough hardwood lumber. The purpose of the computer vision
system is to locate and identify grading defects in a species-
independent manner. The current system can detect four of the
most common types of grading defects : knots, holes, wane,
and splits/checks. The system has been designed using a
knowledge-based approach employing a Blackboard framework.
The system has been tested on a number of boards from the
most used hardwood species. The results indicate that the
development of a fully automatic grading system is possible.

1. Introduction

Sawmills saw logs into boards. They sell these boards (o
secondary remanufacturers who use this raw material to man-
ufacture goods such as furniture, cabinets, etc. The price a
sawmiller can charge for a volume of lumber depends on its
grade, e.g., Firsts and Seconds, No. 1 common, No.2 common,
etc. For a number of species the price of a given volume of
material can double in going from one grade (o the next higher
grade. Thus, accurate and consistent grading of hardwood lumber
is very important to both seller and purchaser of lumber.

Currently, the grading of rough hardwood lumber is done by
inspectors according to standardized grading rules developed by
the National Hardwood Lumber Association (NHLA). Skilled
inspectors can accurately grade lumber. However, it takes
considerable time to develop truly skilled graders and time
translates into money. Further, while few studies have been
conducted to determine factors that can affect grading accuracy,
it can be assumed that these factors correspond to those of other
human endeavors. Therefore, it can be assumed that boredom,
state of mind, fatigue, etc. can all affect the accuracy of the
grading process.

An automatic grading system suffers none of those human
failings. It never gets tired or bored. It attacks each new
board with equal enthusiasm. An automatic system would be
an expert at the very first minute it is turned on.

While the grade of a board does to a large extent depend on
the distribution of defects on the board’s surface, appropriate
edging and trimming can increase the grade of a board, Hence
optimal edging and trimming provide a mechanism for a sawmiller
to increase his profits. One preliminary study indicates that
optimal edging and trimming could increase profits by at least
20% [1]. Optimal edging and trimming would be possible if
an automatic grading system existed. Thus, there are a number
of reasons to believe that developing an automatic grading system
could have a very positive impact on the sawmilling industry.

Any automatic grading system must have two components. The

first of these is a computer vision system for locating and
identifying grading defects on rough hardwood lumber. A
grading defect is a surface defect that can affect a board’s grade
under NHLA rules. The surface defects that occur most frequently
include knots, wane, holes, decay, stain (mineral and blue),
checks, and splits. The second component is a program that
can establish the grade of a board based on the output of the
vision system. It is this program that incorporates the NHLA
grading rules and grades a board based on the distribution of
defects present on the board’s surface. Significant progress has
already been made on creating the second of these components
[2]. This paper is aimed at developing the first component,
the vision system for locating and identifying grading defects.

While some investigators [3-7] have reported progress on
developing computer vision systems for locating and identifying
defects on surfaced lumber, little if any work [8] has been done
on locating and identifying defects on rough lumber.

These systems suffer serious problems inherent in statistical
pattern classification [9]. The most serious one is that they do
not utilize the available knowledge about the various properties
of defects such as shape, size, location, syntactic and semantic
relationships with other defects, etc. As a consequence, clas-
sification is image dependent and unstable. This leads to a
conclusion that statistical classification methods cannot be used
for inspecting rough lumber. Rather, a knowledge-based approach
is appropriate to incorporate all kinds of available knowledge
about various properties of the grading defects.

2. overview of The Vision System

The vision system consists of two modules: a low-level module
and a high-level module. The block diagram of the system is
shown in Figure 1. An overview for each module is given
below.

2.1 The Low-level Module : Segmentation and Feature
Extraction

The low-level module consists of two parts : segmentation of
an input board image and extraction of region properties. The
purpose of the segmentation is to reduce the volume of the
image data to be processed. Specifically, it tries to extract
potential defects from the image. Since 80% or more of the
total area of a board is clearwood, it is critical in saving
processing time to detect potential defects as fast as possible
and at an early processing stage. Once this has been done,
higher level processing that is typically more sophisticated and
time-consuming can be applied only to those regions believed
to potentially contain a defect. Such regions usually occupy a
very small percent of the whole image. Segmenting an input
board image is performed using a histogram based thresholding
met hod.

After segmentation, the low-level module identifies all connected
regions, eliminates small noise regions, merges adjacent regions
that have similar average gray levels, and computes region
properties of merged regions. The result of this processing is
a more accurate and concise description of each of the regions
passed on for higher level processing.

2.2 The IIigh-Level Module : Recognition

The function of the high-level module is to perform the scene
analysis task and to identify the defect present in each of the
regions passed to it. In performing this function the high-level
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control flow

data flow

Fig. 1 Block diagram of the vision system

module uses both bottom-up processing on the regions that have
been found as well as top-down processing using original image
data when a hypothesis needs further substantiation. A Blackboard
framework [10] is used as the software architecture for the
high-level vision module because it allows the use of diverse,
independent, potentially inaccurate sources of knowledge in a
cooperative manner. By using focus of attention mechanism,
the best data and the most promising methods can be exploited.
A fuzzy confidence measure is used to represent uncertainty.

2.2.1 A Blackboard Framework for the Vision System

A typical blackboard consists of three basic components :
knowledge sources (KSs), blackboard data structure, and control
modules.

Knowledge Sources
The domain knowledge needed to solve a problem is partitioned
into KSs, which are kept separate and independent. The condition
component dictates when the KS can be put to use and the
action component specifies the contribution that the KS can
make. A KS can communicate with other KSs through only
a global data base, a blackboard.

There are a number of knowledge sources for the high-level
vision module. A KS, INIT, does some initialization and
computes confidence vectors. Each component of this vector
for a region is the confidence that the region is of a particular
defect type. LBLCON is a KS for labeling unlabeled regions
using spatial contextual dependency. VRFDFC is a KS for
verifying labels assigned to regions by defect detection KSs.
This verification involves using spatial constraints between
different defects. RMLBL is a KS that resolves labeling
ambiguity if multiple defect labels are assigned to a region.
Other KSs are defect detection procedures, each of which is
designed to detect one kind of defect in the surface of rough
lumber. It is natural to partition knowledge about defects,
according to defect types. Its major advantage is easiness in
adding a detection procedure for a new type of defect.

Blackboard Data Structure
The purpose of the blackboard is to hold computational and
solution-state data needed by and produced by the KSs. The
KSs use the blackboard data to interact with each other indirectly.
A blackboard consists of objects that can be input data, partial
solutions. alternatives. and final solutions (and possibly, control
data). The objects in’ the blackboard are hierarchically organized
into
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levels of analysis.

blackboard structure for the high-level module is organized
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into the following entities:

Original image
Symbolic segmented image
Region property table
D_OBJECT property table
Region adjacency matrix
D_OBJECT adjacency matrix

The symbolic segmented image is a symbolic image where each
pixel in a region is labeled with the same unique region number.
The symbolic image is generated by segmentation step in the
low-level module. The region property table is a collection of
property lists for all regions. A property list is associated with
each region. A property list consists of a region attribute vector,
a confidence vector, a pointer vector, and an interpretation label,
The region attribute vector consists of various region properties
whose values are assigned by the low-level module. The
interpretation label is the label (clearwood or one of the defect
types) assigned to the region. Confidence vectors, pointer vectors,
and interpretation labels are assigned values by the high-level
module.

There are two basic units in the blackboard: regions and
D_OBJECTs which are hierarchically linked by a part-whole
relationship. A D_OBJECT consists of a set of connected
regions that have the same defect label. Each component of
a region’s pointer vector points to a D_ OBJECT associated with
the region. Each D_OBJECT generated stores its properties on
the D_OBJECT property table. The D_OBJECT property table
has the same structure as the region property table except the
pointer vector field, Each component of the pointer vector
associated with a D_O13JECT is assigned as a specific defect
label if the D_OBJECT is verified by the corresponding defect
detection procedure. The region adjacency matrix is defined as
a matrix whose (i,j)-th element is the common perimeter between
region i and region j divided by the perimeter of region i. The
D_OBJECT adjacency matrix is defined similarly, These
adjacency matrices provide contextual information among regions
or D_OBJECTs that is vitally important in interpreting images.

Control
There is a set of control modules that monitor the changes on
the blackboard and decide what actions to take next. Various
kinds of information are made globally available to the control
modules to determine the focus of attention. The focus of
attention indicates the next thing to be processed. The focus
of attention can be either the KSs or blackboard objects, or a
combination of both.

In the vision system, the control of processing flow is done
using a combination of both sequential control and opportunistic
control. This combination is more efficient than opportunistic
control of a typical blackboard system, At an initial stage of
high-level processing, KS INIT is applied for initialization that
includes calculation of confidence vectors. Then, KSs for defect
detection are run independently and opportunistically. Confidence
vectors are used for the focus of attention in selecting which
KS (for defect detection) to be activated and next regions to
process, Once KSs for defect detection have finished their
operations, KS VRFDFC (verification of defects using spatial
constraints) and KS RMLBL (resolving labeling ambiguity) are
performed sequentially. Before and after applying VRFDFC, a
determination is made as to whether there are any regions that
are still unlabeled. If there are unlabeled regions, then KS
LBLCON is invoked to label those regions using spatial contextual
dependency.

3. The Low-Level Module

3.1 Segmentation

This step performs two functions. First it separates pixels of
background from pixels of board. Then it separates pixels of
clear wood from pixels that might be from area containing a
grading defect. The module uses as input a 8-bit 480x512 full
color image of a board.

Separating pixels of background from pixels of board is facilitated
by the fact that one can control the color of the background.
Details of this step are given in [4].



Differentiating pixels of clear wood from
of a defect is a more difficult problem.
thresholding is used. The thresholds are
matically selected based on valley points

pixels that might be
A histogram based

adaptively and auto-
and inflexion points

of the gray level histogram of the input image. The motivation
for the histogram based thresholding comes from the fact that
it is very insensitive to surface roughness, and from the
requirement that the vision system must be able to process high
resolution images as fast as possible. The detailed steps used
to find the thresholds are given in [8].

Once the thresholds have been found, regions formed by each
pair of thresholds are marked. All pixels having gray level
value between two consecutive thresholds are marked the same.
Connected component labeling [11] is performed. All connected
regions are found and each such region is given a unique label
to differentiate it from the rest of the connected regions.

3.2 Extraction of Region Properties

The second step of the low-level module is to extract a variety
of properties of segmented regions that are used for labeling
regions as clearwood or a particular type of defect in the
high-level, recognition module. Unfortunately, segmented output
typically contains many small meaningless regions due to both
rough surface structure of a board and digitization noise. Also,
some regions are overfragmented. Therefore, to provide more
reliable region descriptions to the high-level module, it is
necessary to eliminate small noisy regions and to merge over-
fragmented regions. Reducing the number of regions also
decreases computation time needed to extract properties for all
regions. The small region elimination operation is performed
first because it is computationally fast and it usually significantly
reduces the number of regions produced by the original seg-
mentation. A region merging operation is then performed. This
region merging operation is computationally more complex than
the small region elimination operation because the former is
based on a statistical test. It is applied to only those regions
that remain after the small region elimination operation.

The small region elimination is done similarly as that discussed
in [12]. After all the small regions have been eliminated, further
region merging is performed. This merging operation is based
on a statistical T-test for equality of average gray levels between
adjacent regions R1 and R 2. The underlying assumptions
associated with the use of the T-test is that the gray levels of
the pixels in both R1 and R2 are independent, that they have
identically distributed normal distributions, and that the variances
of the distributions are unknown but equal. The steps associated
with using the T-test are given below. Similar statistical tests
have been used by other investigators, for example, [13].

Step 1. Select R1, the region with the smallest area. Let nl

be the number of pixels in R1.
Step 2. Find R2. Of all the regions adjacent to R1, R2 is the
region that is the most similar in average gray level. Let n2

be the number of pixels in R2.
Step 3. Compute the sample mean, X1, and the sample variance,
S 1

2, of the gray levels of R1, Also compute the sample mean,
X 2, and the sample variance, S2

2, of the gray levels of R2.
Step 4. Using

compute the statistic

Step 5. If the absolute value of tobs is less than a threshold,
then assign R1 the region label of R2. (The threshold used
should be a very conservative one so as to prevent over-merging.)

After the region merging operation is complete, a vector of
features is extracted from each of the resulting regions. These
features are as follows:

1)
2)

pixels

area, the number of pixels in a region;
average gray level, average of all the gray levels of the
in a region;
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3) center of

where (r,c) R
R, and N is the

4) minimum

represents the coordinates of a pixel in region
area of region R;
bounding rectangle (MBR), whose upper left

vertex point, (r1, cl) and lower right vertex point, (r2, c2) are
defined by

and

5) elongatedness,
ELONG = e1/e2

where el and e2 are eigenvalues of the covariance matrix of the
distribution of               and e1 > e2;

6) perimeter, the length of the boundary of a region;
7) compactness,

8) flag_board_boundary, a flag indicating whether a region
is touching board boundary or not.

The center of mass of a region gives a rough estimate for the
location of the region. There are four kinds of basic shape
features : MBR, Elongatedness, Perimeter, and Compactness.
The MBR of a region is very useful to efficiently locate the
region in the original image or the segmented symbolic image.
It also provides a rough estimate for elongatedness of a region.
Elongatedness of a region is necessary to differentiate splits/checks
from other defects. Compactness of a region is useful for
finding compact defects, e.g., holes. Perimeter of a region is
used to calculate compactness of the region. Flag_board_boundary
of a region is used to determine whether the region is touching
board edge or not. This is a helpful feature in finding wane
since wane almost always appears on the edge of a board.

4. The High-Level Module

The goal of the high-level module is to identify the type of
defect present in each of regions passed from the low-level
module and to extract the appropriate characteristics associated
with each defect, The basic strategy used is to first detect each
defect independently of the others, and then resolve ambiguity
for regions [hat are not labeled uniquely. A Blackboard framework
is adopted as the software architecture in this module.

The first KS to be used is INIT (initialize), a KS for initialization.
All pointer vectors and interpretation labels are initialized as
null, that is, all regions are unlabeled. The largest region is
labeled as clearwood since 80 percent or more of the total area
of a board is always clearwood, Next a region adjacency matrix
(RAM) is constructed and is stored in the blackboard for later
use. Finally, for each region a confidence vector is determined
based on this region’s properties, i.e., the properties that were
computed by the low-level module. Each component of this
vector is the confidence that the region is of a particular defect
type. The evaluation of these confidences is based on fuzzy
set theory [14]. For details of this step, see [8].

Once all the regions have had their initial confidence vectors
computed, defect detection procedures are applied. These defect
detection procedures are very specialized KSs. Each defect
detection procedure is designed to detect a particular defect
using knowledge about spectral and shape characteristics of that
defect. It should be noted that each procedure runs independently
of the others; the order of applying the procedures is unimportant.
A region’s confidence vector determines which defect detection
procedures will be applied to that region.

Basically, each defect detection procedure consists of two steps.
The first step is to detect regions that seem to be the defect
of interest, and give them this defect label. As the labeling is
being performed links between adjacent regions with the same
label are being formed. Such linked regions form the next
level in the descriptive hierarchy, D_OBJECT. The, second step
in each defect detection procedure is labeling verification. The



verification step involves generating a property list for each
D_OBJECT. This new property list is used together with defect
specific knowledge to verify the labeling. Note that after the
application of the defect detection procedures it is possible that
a region can be in multiple D_OBJECTs.

Even after all the defect detection procedures have been applied,
there may still exist unlabeled regions. Such regions are labeled
using spatial contextual dependency by the KS LBLCON (label
by context). First, every unlabeled region is labeled as clearwood.
This step is motivated by the fact that the defect detection
procedures should be able to identify any region that truly is
a defect. Based on this assumption any unlabeled region should
be clearwood. However, in reality some unlabeled regions are
really a part of a defect, To allow for this possibility after
LBLCON has finished step 1, it checks to see if each “small”
clear wood region is almost enclosed by any D_OBJECT. If
this is the case, then this region is given the label of the
D_OBJECT with which it shares the longest common boundary.
The word “small” is used above to indicate that the largest
region is not subjected to this analysis. This prevents a defect
around the boundary of the board from causing the interior
clearwood area to be labeled as a defect. As clearwood regions
are assigned new defect labels by LBLCON, applicable
D_OBJECTs are updated to reflect the new labeling. Any
updated D_OBJECT has a flag set to indicate it has been
updated. At this time no updated property list is generated for
any of the D_OBJECTs.

The KS VRFDFC (verify defects) attempts to verify the labeling
of each D_OBJECT by using spatial constraints among adjacent
D_OBJECTs. For example, if a D_OBJECT that is not labeled
as wane is surrounded by a D_OBJECT that is labeled as wane,
then the surrounded D_OBJECT is changed to wane. This
follows the fact that there are no other defects in an area of
wane. If the validation procedure fails to verify the label
assigned to a D=OBJECT, the D_OBJECT is removed from
further considerations. The pointer vector of each region
associated with this D_OBJECT has its component corresponding
to the D_OBJECT's label re-initialized as null. If after KS
VRFDFC has been applied there are any unlabeled regions, KS
LBLCON is used to label these regions using spatial contextual
dependency.

The final step in the processing is to resolve instances where
regions have been assigned multiple labels, i.e., where a region
is a part of more than one D_OBJECT. This processing is
performed by KS RMLBL (resolve multiple labels). To find
regions that are part of more than one D_ OBJECT and to
identify the D_OBJECTs involved the region pointer vectors are
used. Each D_OBJECT corresponds to one possible label for
the region. To determine which label the region should have,
a new property list is computed for each D_OBJECTs involved
if required; it depends on whether a flag has been set by KS
LBLCON. Each D_OBJECT's property list is used to calculate
a confidence value that the D_OBJECT has its defect label.
The region is assigned the label of a D_OBJECT whose confidence
value is the highest among the confidence values of the
D_OBJECTs associated with the region.

4.1 The Defect Detection Procedures

There is a defect detection procedure for each type of defect.
The first step in each defect detection procedure is to label a
region as the corresponding defect if the region has a high
confidence of being of its defect type. The basic strategy used
in this step is to first detect regions that represent “exemplary”
examples of the defect the procedure was designed to recognize.
Specialized defect detection methods are applied to detect such
“exemplary” defects. After all of the exemplary defects have
been recognized, then regions representing more “ambiguous”
examples of that defect type are considered. Labeling these
regions is based on defect detection methods that gauge contextual
dependency and similarity of region properties.

As the labeling is being performed links between adjacent regions
with the same
form the next
A D_OBJECT

The next step

label are being formed. Such linked regions
level in the descriptive hierarchy, D_OBJECT.
is formed for each group of regions formed.

of a defect detection procedure is a labeling

348

verification step. It is necessitated by the fact that each region
does not usually correspond to a defect; typically a defect is
fragmented into several regions. At this stage of the processing
a property list is computed for each D_OBJECT. The properties
at the level D_ OBJECT should be more representative of the
actual defect that is present. These new properties, together
with other knowledge about the defect, are used to verify the
labeling of the D_OBJECT. Some specialized image processing
techniques might be used to extract further evidence for the
defect which is to be recognized.

4.1.1 Split/Check Detection Procedure

This K is activated only if there is at least one region in the
image whose confidence vector indicates it might be a split/check.
Usually, splits/checks appear in an image as a linear structure
that is elongated, thin, and dark. To detect regions representing
"exemplary" splits/checks, a “crack” detector is applied to each
unlabeled region, R, whose confidence vector indicates it might
be a split/check. If the crack detector has successfully found
a crack within R, then R is labeled as a split/check.

The crack detection in R is performed by 1) applying four
directional masks shown in Figure 2 to each pixel of R, 2)
counting the number of pixels where maximum response of the
four masks is greater than a threshold, and 3) determining if
N/Area(R) > T, where Area(R) represents the area of region R,
N is the count obtained by step 2, and T is a threshold. If
R satisfies step 3, then R is considered to have a “crack” in
it. Otherwise, R is considered to have no crack in it.

Fig. 2 Four directional masks for crack detection

Next, regions representing more “ambiguous” examples of
splits/checks are detected. Let R be an unlabeled region. If
split/check component of the R’s confidence vector is low and
if there is an adjacent region, R’, that has been already assigned
a split/check label and if the elongatedness of R merged with
R’ is greater than that of either R or R’, then R is labeled as
a split/check. This rule detects regions that have low confidence
of being a split/check but are aligned with a region already
recognized as being a split/check.

After all the initial labeling has been performed, D_OBJECTs
labeled as splits/checks are generated and their properties are
computed, Two D_OBJECTs are connected into a single
D_OBJECT, if they are colinear and have a small gap between
them. The reason for this merging is that a single split/check
might be broken into several disconnected pieces, due to the
imperfect segmentation.

Finally, a verification method is applied to each of the
D_OBJECTs. For a D_OBJECT to be considered a split/check,



it should not be small, it should not touch background
frame boundary significantly, it should find a “crack”
and it should be long enough.

4.1.2 Hole Detection Procedure

or image
inside it,

This KS is activated only if there is at least one region in the
image whose confidence vector indicates it might be a hole.
There are two types of holes : small and large holes. Usually,
birds and worms make small holes which appear circular and
very dark. Large holes are caused by the dislocation of knots.
They appear very dark with shape of either circle or ellipse.

To detect regions representing “exemplary” holes, all regions
that have a positive “hole” component in their vector are
considered. Let R be such an unlabeled region. If the area
of R is small, elongatedness of R low, and R much darker than
its adjacent regions, then R is assigned the label hole. (This
rule is based on the way small holes typically manifest themselves
in images) If the area of R is large and R is “very dark,”
then R is also assigned the label hole. (This rule is based on
the way large holes typically manifest themselves.)

Next, regions representing more “ambiguous” examples of holes
are labeled using the following rule. Let R be an unlabeled
region. If an adjacent region R’ has been labeled as a hole
and if R and R’ have similar average gray values, then label
R as a hole.

Once initial labeling has been performed, D_OBJECTs labeled
as holes are generated and their properties are computed. Finally,
a verification procedure is applied to each resulting D_OBJECT.
For the verification procedure to consider a D_OBJECT to be
a hole, it should satisfy all the following conditions:
1) It should have a large confidence for holes.
2) Its area should not be very small.
3) If its area is large, then it should not be highly elongated.
4) If its area is small, then it should satisfy all the following:

i) It should have low elongatedness
ii) It should be compact
iii) Both N1 and N2 should be 1 and minimum gray level

of the region should be very low, where N1 (N2) is the number
of valleys in gray levels of pixels lying on the horizontal
(vertical) line passing through the centroid of the region.

4.1.3 Wane Detection Procedure

This KS is activated only if there is at least one region in the
image whose confidence vector indicates it might be wane.
Wane is defined as bark or lack of wood. It typically consists
of two parts: an external part and an internal part. (Some boards
have only external wane.) External wane appear very dark and
is on the edge of a board while internal wane is highly elongated,
looks less dark, and exists between external wane and clearwood.

External wane is first detected and then internal wane is detected,
if it exists. To detect external wane, 1) label regions of high
confidence as wane, and then 2) label a region as wane if it
is surrounded by regions already labeled as wane.

Internal wane is detected using the following steps. 1) Label
a region as wane if it is dark, highly elongated, and shares
significant portion of common boundary with regions already
recognized as wane. 2) Label a region as wane if it is surrounded
by regions already labeled as wane.

Once initial labeling has been perfomed, D_OBJECTs labeled
as wane are generated and their properties are computed. Finally,
verification is performed for each resulting D_OBJECT. For a
D_OBJECT labeled as wane to be verified, 1) it should touch
background considerably, 2) it should not be extremely elongated,
and 3) it should be much darker than its adjacent regions.

4.1.4 Knot Detection Procedure

This KS is activated only if there is at least one region in the
image whose confidence vector indicates it might be a knot.
It is very difficult to characterize knots because they appear
quite different from one knot to another in gray level, shape,
and/or size. We can have both a very small knot and very
large knot. Knots can be circular or elliptical. Knots are
usually dark, but average gray value difference between knots
can be large.

In order to detect regions, representing “exemplary” knots, all
regions that have high confidence level are labeled as knots.
For any remaining unlabeled region R, apply the following rules.
If R has some degree of confidence as a knot and if R shares
a significant portion of its region boundary with regions that
have already been labeled as knots, then label R as a knot.
This rule combines together many regions formed by the seg-
mentation but that go together to form the whole knot structure.

Once initial labeling has been performed, D_OBJECTs labeled
as knots are generated and their properties are computed. Finally,
verification is performed for each resulting D_OBJECT. For a
D_OBJECT labeled as a knot to be verified, 1) if it is small,
it should not touch the background, and 2) it should be much
darker than its adjacent regions.

4.2 Defect Verification Using Spatial constraints

Each defect detection procedure runs independently of others
without consideration of other defects. Thus, it is necessary to
remove any incompatibility between adjacent defects using spatial
constraints between them. A KS, VRFDFC is activated for this
purpose, once all defect detection procedures have been run and
finished. For each remaining D_OBJECT, O, to be verified,
none of the following conditions should hold:

1) LABEL(O)=split/check and ENCLOSED_BY(O,X), where
LABEL(X)=wane
2) LABEL(O)=split/check and ADJACENT(O,X), where
LABEL(X)=hole
3) LABEL(O)=knot and ADJACENT(O,X), where
LABEL(X)=hole
4) LABEL(O)=knot and ADJACENT(O,X), where
LABEL(X)=wane

In the above, LABEL(O) denotes defect label of D_OBJECT
O, and both ENCLOSED_BY and ADJACENT are relational
predicates. ENCLOSED_ BY(O,X) is true if O is enclosed by
X, and ADJACENT(O,X) is true if O is adjacent to X.

If the validation procedure fails to verify the label assigned to
a D_ OBJECT, the D_OBJECT is removed from further con-
siderations. The pointer vector of each region associated with
this D_OBJECT has its component corresponding to the
D_OBJECT’s label re-initialized as null. If after KS VRFDFC
has been applied there are any unlabeled regions, KS LBLCON
is used to label these regions using spatial contextual dependency.

5. Experimental Results

The species considered were cherry, red oak, yellow poplar, and
maple. These species were selected because approximately 50
percent of all household wood furniture is made from these
species. Hence having a system that should only grade these
species would still be a viable commercial product. Approxi-
mately 30 boards were selected for each species from the data
base of rough lumber in the Spatial Data Analysis Laboratory.
The samples were chosen to reflect the variation in appearance
of each of the four defects, knots, holes, wane, and splits/checks

An 8 inch by 8 inch area of each sample was selected to be
the area scanned. This area was digitized using a 512x480x8
bits resolution black and white camera. The spatial resolution
is approximately 64 points per inch. To obtain the desired
color images color filters were used. Tungsten halogen bulbs
were used to approximate afternoon sun viewing conditions. To
normalize for, the difference in spectral sensitivity of the sili-
con/tungsten halogen combination neutral density filter were
used. The same lighting conditions, camera settings, and viewing
angle were employed in creating the color image of each sample.
Each color image was shading corrected to remove any non-
uniformities in lighting or sensitivity across the camera’s imaging
array [15].

Several processing examples are presented to demonstrate
capabilities of the current system. First, a detailed illustration
of each step is given using a sample image. A black and white
image of a rough cherry board is shown in Figure 3(a). Figure
3(b) shows region boundaries right after segmentation (before
small region elimination). Figure 3(c) shows region boundaries
after small region elimination and region merging. We can
notice that a lot of small noisy regions have been removed.
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Recognized defects after high-level processing, splits/checks and
a knot are shown in Figure 3(d). (Each defect label is given
a unique gray level with its name. White area represents
clearwood.)

Figure 4 shows the results obtained for a rough red oak sample.
Observe that wane and a knot have been correctly recognized.
Figure 5 shows the results obtained from processing a rough
yellow poplar sample. A large knot has been correctly identified.
Also note that this sample contains both heartwood (dark area)
and sapwood (light area). Both comprise the clearwood of the
board. Neither is a grading defect. Observe that the vision
system ignored the difference in appearance.

6. Conclusions

A computer vision system for automated grading of rough lumber
has been described. The purpose of the computer vision system
is to locate and identify surface defects that affect the grade of
boards. The current system can detect four of the most common
types of defects : knots, holes, wane, and splits/checks. The
system has been designed using a knowledge-based approach
employing a Blackboard framework. The system has been tested
on a number of boards from four hardwood species. While it
has limited recognition capabilities, only being able to identify
four defect types, it does suggest that species independent methods
can be found for accomplishing the required tasks. However,
much further research is required. The future research should
be directed toward expanding the list of defects that can be
identified by the system as well as improving the accuracy of
defect recognition. To do so, more knowledge about the defects
and more sophisticated image processing methods will probably
have to be incorporated in the system.
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(a)

(c)

(b)

(d)
Fig.3. A rough cherry board. (a) Original image. (b) Region
boundaries right after segmentation. (c) Region boundaries after
region merging. (d) Results of defect recognition.

(a)
Fig.4. A rough oak board. (a)
defect recognition.

(b)
Original image. (b) Results of

(a) (b)
Fig.5. A rough poplar board. (a) Original image. (b) Results of
defect recognition.
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